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SUMMARY 
Abel transforms are used to simplify the equations describing the deformation of an elastic medium by a rigid indentor 
with a circular cross-section. The equations derived constitute a convenient starting point for the numerical solution 
of such problems. As a particular example the case of a parabolic rough punch is treated. 

1. Introduction 

The problem of the indentation of an elastic medium by a rigid punch has been considered by 
several authors, using primarily analytical techniques ([1], [2], [3], [6], [8], [10]). While a 
number of results have been derived, the problem, at least in some aspects, tends to be a difficult 
one. Recently one of us (Linz [4], [5]) has used the method of Abel transforms to reduce certain 
axisymmetric mixed boundary value problems to a form well suited to numerical solution. As 
we will show in the present paper this technique is quite suitable for the punch problem. 
The set of equations which we derive is convenient both for the theoretical and numerical 
treatment; however, our interest is primarily in the numerical approach. 

2. Basic Equations 

We consider the problem of determining the stresses and deformations in an elastic half-space 
under the influence of a normal pressure applied by a rigid punch of circular cross-section 
(Fig. 1). The quantities of interest are the relations between the total penetration 6, the contact 
radius a, the normal stress a~ and the shear stress Zrz in the region of contact, the total applied 
load P, and the shape of the deformed surface. Using cylindrical coordinates the relevant 
equations are (Abramian [1], Sneddon [7]) 

G(r, 0) = [ (1 -2v )B+2A]23Jo (2 r )d2 ,  (1) 

%z(r, 0) = f~  [ - 2 v B +  2A]23J1(2r)d2, (2) 

1 f~ [2( l -2v)B+2A]A2J~ (3) u~(r,O)- 2~ 

1 I~[-B+.~AJ.~2Jl(~r)d~ (4) ur (r, 0) - 2/z 

where # is the shear modulus, v Poisson's ratio, and ur and u~ the displacements in the r and z 
directions, respectively. A and B are unknown functions of 2 to be determined from the bound- 
ary conditions 
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o~(~, 0) = 0 ,  for ~ > ~ ,  (5) 

~=(r, 0) = 0,  for r > a ,  (6) 

u~(r, 0 ) = f ( r ) ,  for r<=a. (7) 

Here f(r) is a known function, depending on the shape of the punch. It is well known that 
equations (1)-(7) are not sufficient to describe the problem completely. In particular, the radial 
displacement ur, and hence the rest of the quantities, depend on the coefficient of friction 
between the surfaces. The two extreme cases are (i) the coefficient of friction is zero, or (ii) 
the coefficient of friction is infinite so that no slip occurs once contact is made. The former is 
called the smooth punch problem, the latter the rough punch problem. 

#3 

Figure 1. Indentation by a punch. 

edium 

We simplify the notation by writing p(r)= a=(r, 0) and q(r)= vrz(r, 0). To apply the Abel 
transform method we introduce the functions Ul(X) and u2(x) defined by 

- ~ (~, o) = _ l u ,  (~) a x ,  (s) 

- ~#ur(r, O) = 7 

The equations are reduced by inverting (1) and (2) by Hankel's inversion theorem and sub- 
stituting the resulting expressions for A and B in the inverted forms of (8) and (9). After some 
manipulations (the details of which may be found in [4]) we arrive at the equations 

f If ii 1 2 ( l - v )  rp(r) d r - ( 1 - 2 v )  q ( r )dr -x  q(r) dr =ul (x)  2 ,2 + ( r 2 - ~ )  ~ o (x - ,  ) 
( lo) 

rp(r) dr +2(1. v)x fl (~2~2)~ a~ = u2(x) -(1-2v) fi (x2 r2)@ (1~) 

Equations (10) and (11) are the basic equations that we will use. As we shall see they form a 
convenient starting point for analytical and numerical computations. 
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3. The Smooth Punch 

For the smooth punch the shear stress zr=(r, 0) vanishes for r ~ a. Thus, with q (r) = 0, equations 
(10) and (11) become simple enough to be solved directly. Omitting the details of the mani- 
pulation (which may be found in [4]) we obtain the results for a given contact radius a: 
Total penetration 

6= - a  (a2-s2)-~ f ' (s)ds.  
o 

Normal stress 

p(r) - 7~(1-v) (x2-r2)-~ ( f ' ( s )+sf"(s) ) (x2-s  2) ~dsdx.  

Total load 

4# p -  
i - v  

'i s2(a2 -- sa)-~f'(s)ds" 

Normal displacement for r > a 

2 2 2alia uz(r, O) = ~(r - a  ) oS(r2-sZ) - l (aZ-s  2) ~ f (s)ds .  

These expressions agree with those of Sneddon [8] and Mossakovskii [6]. 

4. Goodman's Approximation 

An approximate method for treating the rough punch was given by Goodman [2]. The ap- 
proximation is derived by assuming that the contribution to the normal displacement due to 
the shear stress is negligible. In terms of our formulation this is equivalent to neglecting the 
terms involving q(r) in equation (10). If this is done, the resulting equations can be solved in 
a relatively straightforward way, and Goodman's results are obtained. Moreover, looking at 
it from this point of view, we can see under what circumstances this approximation is likely 
to yield good results. The neglected term is proportional to 1 -2v ,  hence good results may be 
expected for v near �89 Comparison of our numerical answers with Goodman's results bears 
out this prediction (c.f. Table 1). 

5. The Rough Punch 

The punch problem under the asgumption of perfect adhesion in the region of contact has been 
considered by Mossakovskii [61, Abramian et al. [1], and more recently by Spence [9], [10] 
and Keer [31, all using essentially analytical techniques. In all cases the final solutions are 
difficult to use since they involve complicated integrals or integral equations except when the 
shape of the punch is that of a simple polynomial. The numerical solution of equations (10) 
and (11) on the other hand appears to be straightforward, except for one difficulty. This diffi- 
culty lies in the fact that apparently the radial displacement ur is generally not known but must 
be determined as part of the solution. A similar problem occurred in connection with the 
analytical techniques and Goodman [2] and Mossakovskii [6] argued that the problem must 
be treated incrementally. That is, at each stage, as the contact radius increases from a to a+ Aa, 
u, is unchanged in 0 < r < a, but u,(a + A a) is determined by the requirement that the normal and 
shear stresses at a+ Aa should remain finite. This incremental formulation can be simulated 
numerically; such an approach was taken in [4] and is described there in detail. However, after 
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the completion of the work in [4] the results of Spence [9] were brought to our attention, which 
show that in fact u, can be determined independently by the use of certain similarity arguments. 
The results to be described in the next section make use of Spence's work. Nevertheless, the 
success of the incremental method is of interest since it might be useful in cases where the 
similarity arguments cannot be used. 

6. Numerical  Method and Results  for a Parabolic  Indentor 

W e  assume that the shape of the punch is described by z = r 2 ,  in which case 

f (r) = a -  r 2 . 

Using the results of [9], we find that 

2 
= ~ - ~  a 2 , ur(r, O) = Cr  2 , 

where 

7 (z) = 1 - 0.6931 z 2 + 0.2254 ~4 + . . . ,  

8x  2 .,/,8 + 1 
C =  

3 flT(~) ' 

fi = 2 - 4 v ,  

= ! l n ( l + f i ) .  :g 

Then 

u~ (x) = - 2/* (6 - 2x2), 

U2(X ) ~- - 3 / * ~ C . ~ 2  , 

The numerical method employed consists of splitting the interval [0, a] into N subdivisions 
by the points xo=  0, Xl, x2, ..., xN = a. The stresses p(x)  and q(x) are approximated by their 
value at the center of each interval so that 

X i - 1 2 X i  i -  X i  
pi~--p , q i ~ q  �9 

These approximations are substituted into (10) and (11) and the resulting equations satisfied 
at x~, x2 . . . .  , xN, yielding, for j =  1, 2 . . . . .  N, a set of 2N linear equations 

N N J 
2(1--V) Z m i ( x j ) p i - - ( 1 - - Z v )  Z ( x i - - x i - 1 ) q l - - x J  ~ ni(xj)qi  = u a ( x j ) ,  (12) 

i = j + l  i=1  i=1  

J N 
- ( 1 - 2 v )  Z m i ( x j ) P i + 2 (  1 - v ) x j  ~. ni(xj)qi  = u2(x j ) ,  (13) 

i=1  i = j + l  

where 

i x, - x ) ~ dr = (x2 - x z ) ~ -  (x2_ l - x2)~ mi(x)  = x r ( r  2 2 - - !  

 i(x) r (x2  2 _ 1  1 , = - r  ) = (x2_ L 1) (x 2-x2)  
xi 1 

ni(x) = ( r 2 - x 2 ) - ~ d r = l o g ( x i + ( x ~ - x 2 ) ~ ) - l o g ( x i _ l  + ( x ~ _ l - x 2 ) ~ ) ,  
.) xi 1 
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f x'x  hi(x) = !x 2 - r2 ) -~dr  = s in-  l ( x i / x  ) - s in-  l ( x  i_ i / x ) .  

This method is simpler, but  somewhat  less accurate than the one employed in [4]. To get any 
reasonable accuracy it is necessary to use unequal  spacing, with mos t  of the points concentra ted  
near x = 1 (where bo th  p and q are not  well behaved). For  example, the results summarized 
below were obtained with N =  25, with the points of subdivision at 0.1 (0.1) 0.7, 0.75, 0.8, 0.85, 
0.9, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.985, 0.99, 0.995, 0.9975, 0.99875, 0.999375, 0.9996875. 
These were derived experimentally;  it is not  known what  the optimal choice is. Extensive 
results for this problem were tabulated in [4] ; in Table 1 we summarize  by giving P as a function 
of  v (for # = 1 and a = 1). Also shown is a compar i son  of  G o o d m a n ' s  results with our  numerical  
answers. 

TABLE I 
Total load P for p = 1 and unit contact radius. 

v 0.1 0.2 0.3 0.4 

P 6.71 7.24 7.95 8.96 

error in Goodman's 11.6 7.9 4.2 0.7 
approx., P= 16/3 (1 - ) )  

7. Conclusions 

The method  presented here is a simple approach  to solving certain indentat ion problems. It 
has the advantage of avoiding difficult analytical manipula t ions  while leading to equat ions 
which are easily solved by numerical  techniques. Even more  complicated problems than the 
one presented here can be done. Spence [11] has recently used the method  for the flat punch 
with partial slip (finite, non-zero  coefficient of friction) with good  results. 
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